
[Vetrivel et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[6001-6004]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

A Survey of Benchmarking Techniques for Real-Time Operating System

Performance Analysis
P. Vetrivel*1, S.Sivakumar2, K. Shanmuga Sundara Babu3

*1,2 Department of Electrical and Electronics, Vel-Tech Dr.RR & Dr.SR Technical University,

Chennai-62, India
3 CDAC/ACTS, Pune, India

vetrivel.est2014@gmail.com

Abstract
The recent advanced implementation Techniques of Real-time Operating System offer high performance and

featured Real-time embedded systems. There are many kind of Implementation on Real-time operating Systems

(RTOS) can be found at the present time. The correctness of an RTOS depends not only on the logical result of the

computation, but also on the correctness of temporal parameters of the task set used in the system. So, it becomes

necessary to measure the response time of real-time mechanisms to predict the performance of RTOS. In recent years,

several approaches have been implemented for benchmarking the real-time parameters. In this paper we review the

various benchmarking techniques for measuring the real-time parameters of RTOS. We discuss the need of measuring

real-time parameters and provide a classification of the techniques on several analyses to highlight their similarities

and differences. This paper is intended to help the researchers and application-developers in gaining insights into the

working of Benchmarking techniques and designing even more efficient high-performance real-time operating

systems of tomorrow.

Keywords: Real-time Systems, RTOS, Performance, Review..

 Introduction
The general purpose operating system

(GPOS) uses fair scheduling method to manage all

resource allocation in the system and the CPU time

allocation for every task. The goal is to achieve

highest throughput by allocating as fair as possible [1].

Because of this, there is a possibility for a situation that

the lower priority task will be executing when higher

priority task is still waiting in queue. In RTOS, this

situation should not exist. The main difference

between general purpose operating system and real-

time operating system is their implementation of

scheduling algorithm. RTOS imposes strict task

priority implementation, where a higher priority task

can preempt a lower priority process which is

currently executing.

There are different approaches in building a

RTOS. First approach is by adding an additional

function to the existing kernel in order to apply task

priority strictly by means of two techniques namely

build micro-kernel and patch kernel to build this

additional functionality. The second approach is to

build from scratch a new operating system which has

real time capability. Most of this kind of operating

system is specific to be used in a particular device, so

the operating system will know exactly the behavior

of the device. This operating system is called as

embedded operating system.

There is a necessary for Research to measure

and benchmark real time parameters of RTOS which

is developed by using different approaches as different

approach serves different performance to the

application. In this paper we review different

benchmarking techniques used to measure

performance of RTOS.

In this paper, we highlight the need of

benchmarking the performance parameters of RTOS

and survey several research works which are aimed at

benchmarking the real time parameters of RTOS. We

believe that this paper will help the RTOS researches

and RTOS designers in understanding the

implementation details of RTOS and their behavior to

the Real time tasks for providing the deterministic

performance to the applications. Thus helps

improving the methods for benchmarking the

performance of RTOS in future approaches.

The remainder of this paper is organized as

follows. Section II provides a background on Real-

time embedded systems and also highlights the need

[Vetrivel et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[6001-6004]

of benchmarking the real-time parameters of real-time

operating systems. Section III provides an overview

of benchmarking techniques used in Real-time

operating systems. Section IV provides concluding

and remarks and also discusses the future challenges

in this field.

Background
An embedded system for computing task is

designed for specific control functions and is

embedded as part of the device which may include

more hardware interfaces and mechanical parts. An

embedded system performs a few pre-defined tasks,

with its specific requirements. Operating system used

in embedded system acts as an interface that connects

and controls the activities of hardware to its user.

Operating system is responsible for allocating all the

available resources to its tasks and providing simple

interface between user and hardware [2]. Based on

their ability in handling real time task, Operating

system can be divided into two kinds: Real-time

Operating System and non-real time operating system

(GPOS). Based on their deterministic performance

RTOS is further classified into three types, Hard Real-

time operating system, Firm Real-time operating

system, Soft Real-time operating system.

Commercial RTOS

For data handling and communication using

the VxWorks [3] platform a software framework [4]

has been developed for providing common

functionalities. VxWorks is widely used in physics

research for several reasons, among which:

• It provides an integrated development platform, thus

simplifying the development process. Programs can be

developed and simulated in the host system before

downloading them to the target system.

• It provides a powerful multitasking environment.

Tasks have a fixed priority and can communicate via

a rich set of inter-process communication (IPC)

mechanisms.

• The software model of VxWorks is quite similar to

that of UNIX, in particular for I/O and networking,

thus simplifying software writing for developers who

have experience with UNIX.

Opensource RTOS

RTAI [5], [6] and Xenomai [7]. RTAI and

Xenomai share most concepts and both represent,

rather than a replacement of Linux, an additional

component that works in conjunction with Linux,

handling the scheduling of real-time tasks and letting

Linux provide all the remaining functionality. In order

to co-operate with Linux it is however necessary that

the underlying hardware be shared by Linux and the

additional component. This is achieved in both RTAI

and Xenomai by using the ADEOS nanokernel [8],

[9], which acts as a broker of the hardware

functionality. In particular, hardware interrupts are

normally handled by ADEOS, which propagates

notifications in sequence to the other components. In

this case Linux and RTAI (or Xenomai) represent

ADEOS domains, and are logically organized by the

nanokernel as a pipeline. The component that is

declared to be at the head of the pipe will receive

interrupt notifications first and may then decide

whether letting ADEOS propagate them along the

domain pipe. In this case RTAI (or Xenomai) is at the

head of the pipe and has therefore precedence over

Linux, thus allowing deterministic response times

regardless of the actual Linux implementation. This

organization is fully achieved in Xenomai. RTAI has

a somewhat different organization Instead of letting

ADEOS handle all the interrupt sources, RTAI

intercepts them, using ADEOS to propagate those

interrupt notifications to Linux in which RTAI is not

interested in (i.e., the interrupt does not affect real-

time scheduling). The reason for this mixed approach

is performance, because in this case, if the interrupt is

going to awake a real-time task, the overhead due to

the management of the interrupt by ADEOS

is avoided.

Benchmarking Techniques
Benchmarking the RTOS’s performance is

important; because there are some cases that task

execution time needs to be calculated for deterministic

performance of application. To measure the quality of

a RTOS, we need to understand their implementation

to manage its task. Another important thing in RTOS

is responsiveness, by means of which we will be able

to know how fast a RTOS manage their task. A lot of

researches have been done in the field of RTOS. Four

performance metrics which are interrupt latency, task

switching time, preemption time, and deadlock break

time were analyzed in [10]. This research used one

test bed application in benchmarking to assess the

performance of RTOS.

K. Ghosh, B. Mukherjee, K. Schwan have

compared many kind of RTOS [11]. They analyses

some RTOS and its features are studied, but did not

quantitatively analyze the performance of the RTOS.

They discusses about the features of commercial

RTOS and the comparison of commercial RTOS. J.

Carbone proposes other research that discuss ways to

[Vetrivel et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[6001-6004]

measure performance RTOS on the topic of testing

RTOS [12]. This measurement has been applied to

measure Express Logic’s ThreadX RTOS.

Most research in the RTOS field is about

kernel based tasks, as kernel tasks has less latency and

high privileges to access kernel data structures results

in good performance results. One thesis research at

[13] is about the comparison of three RTOS kernel

based tasks, namely RTAI Linux, Xenomai, Real-

Time patch. In this research paper they compared

about the real-time parameters like jitter, interrupt

latency, IPC, maximum frequency; overload behavior,

and priority functionality. Other study related to this

kernel-based RTOS is conducted by [14]. The

research is done by comparing Xenomai and RT Patch

Linux to measure four metrics, task switching time,

interrupt latency, preemption time, and deadlock break

time.

D. Lohmann, et al. has done research on

quantitative aspects of eCos [15]. In this research,

analysis and test of eCos kernel are focused on runtime

and memory cost aspects. Performance aspect on

eCos has not been considered in this research. The

research in this paper [16] tests the performance of

eCos based on certain performance metrics. The test

results in eCos will be benchmarked with test results

on Xenomai and RT-Patch that has been done by [14].

By means of this analysis, we can compare the

performance of RTOS kernel based with embedded

OS. The test using data packet processing application

is also conducted in addition to the four metric

scenarios. By doing this the real-time application

which runs on RTOS is consider for the overall

performance measurement.

Levine [17] and his peers have done

benchmark on context switch time and priority

inversion Protocol latency of a real-time CORBA2

architecture and presented their results in their

research paper. The method used to detecting and

observing priority inversion is complicated in his

approach. Obenland’s [18] article explains another

straightforward way to create priority inversion

scenario. Sohal [19] has considered both the analytical

and empirical approaches to measure different phases

of interrupt latency of a real-time operating system.

Interrupt latency is an important parameter of an

RTOS to analyze the performance of different

implementations.

Conclusion and Remarks
The advanced real-time systems will possess

capabilities for high-speed data processing and

communication which will require very high time

bound processing than what is available in state-of-

the-art systems. This necessitates the need of

improving the real-time mechanisms in RTOS for our

future need. To cope with these challenges, Very high

performance is necessary at all levels of

implementation application level and system level. In

this paper we reviewed several Benchmarking

techniques for measuring the performance of RTOS

using real-time parameters. It is hoped that by

providing insights into the Benchmarking techniques,

this paper would help the researches in addressing the

implementation challenges of RTOS for efficient real-

time systems of tomorrow.

References
[1] M. Barabanov, A Linux based Real Time

Operating System, 1997.

[2] A. S. Tanenbaum, Modern Operating

System, 2nd ed. Prentice Hall. 2002.

[3] Wind River home page, [Online]. Available:

http: www.windriver.com.

[4] M. Cavinato, G. Manduchi, A. Luchetta, and

C. Taliercio, “General-purpose framework

for real time control in nuclear fusion

experiments,” Trans. Nucl. Sci., vol. 53, pp.

1002–1008, 2006.

[5] RTAI Home page, [Online]. Available: http://

www.rtai.org.

[6] P. Cloutier, P.Mantegazza, S.

Papacharalambous, I. Soanes, S. Hughes,

and K. Yaghmour, in DIAPM-RTAI position

paper, Nov. 2000, RTSS 2000—Real Time

Operating System Workshop, 2000.

[7] Xenomai home page, [Online]. Available:

http://www.Xenomai.org.

[8] ADEOS home page, [Online]. Available:

http://www.adeos.org.

[9] KarimYaghmour Opersys Inc., Adaptive

Domain Environment for Operating Systems,

2001. [Online]. Available:

http://www.opersys.com/ftp/pub/Adeos/adeo

s.ps.

[10] P. Feuerer, “Benchmark and Comparison of

Real-Time Solutions Based On Embedded

Linux”. Hochschule Ulm, German : 2007.

[11] K. Ghosh, B. Mukherjee, K. Schwan, “A

Survey of Real-Time Operating Systems”.

Technical Report Nr : 1994.

[12] J. Carbone, “Measuring Real-Time

Performance of An RTOS”. Express Logic,

inc. San Diego, CA : 2003.

[13] P. Feuerer, “Benchmark and Comparison of

Real-Time Solutions Based On Embedded

Linux”. Hochschule Ulm, German : 2007.

[Vetrivel et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[6001-6004]

[14] I. S. Wijayanto, “Analisys and Benchmarking

Real-Time Performance in Linux Based

Operating System: Xenomai and Real-Time

Patch”. Sekolah Teknik Elektro dan

Informatika - Institut Teknologi Bandung.

Bandung : 2008.

[15] D. Lohmann, et al. “A Quantitative Analysis

of Aspects in The eCos Kernel”.ACM

Journal:2006.

[16] On Performance of Kernel Based and

Embedded Real-Time Operating System:

Benchmarking and Analysis.

[17] D. Levine, S. Flores-Gaitan, C. D. Dill, and

D. C. Schmidt, “Measuring OS Support for

Real-Time CORBA ORBs”, in 4th IEEE

International Workshop on Object-oriented

Real-Time Dependable Systems 00’, Santa

Babara, California, Jan. 27-29.

[18] K. Obenland, “Real-Time Performance of

Standards Based Commercial Operating

Systems”

[19] V. Sohal, “How To Really Measure Real-

Time”, Embedded System Conference,

Spring 2001

